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§& INTRODUCTION
With one notable exception, this year's activities on Grant

AFOSR-80-0282 were much different than the activities of preceeding

“y ol
.
’
—eaty fa

yeaxrs. This fact is a simple consequence of the evolutionary nature of
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this program. The first few years were spent demonstrating the
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feasibility of the experiment and recording and evaluating velocity
and pressure data to be used as the forcing function for the boundary

layer itselfrl,2, During the next year the initial boundary layer data

)
;ﬁ vere recorded for a variety of test conditions3. This was a very
.Eﬁ useful and exciting period, since much of the data represented a new
.24 combination of parameters. The last year was spent largely in .
”ﬁg consolidating the data, "filling in the envelope,"” as it were. It was
7
rﬁf also a period of reflection, consolidation and improved understanding of
.jﬁ both the older and the newer data, which included studies of additional
ZSE features of the experiment, such as near wake velocity profiles and
fd separated flow pressure distributions., Additional tests were also
% conducted to help delineate the velocity part of the unsteady forcing
T
‘;ﬁ function from the acoustic or pressure part. In some circumstances
fi' tests were conducted either to demonstrate, say, the two-dimensionality
‘:{ or lack of it, on the metric surface or to confirm or reject hypotheses
E; or explanations of various features in the data. These results will be
o

discussed briefly below. Some interpretations of this data will also be

briefly set forth.

R

%
;Q The notable exception referred to in the opening sentence is a
':‘ 4
b, result of a failure to either find a suitable research student or to
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hire a suitable engineer to complete the development of the floating
element shear gauge. The experience from the preceeding two years

suggested that unless a suitable student or engineer was available, the

results were not worth the cost. This short term loss now appears to

’

have resulted in a long term §a1n for two reasons. First a cheaper,

Pl L

more reliable method has been adapted for our use, and second we have

reprogrammed the assets and improved our ability to take simultaneous

data from many hot wire and pressure sensors. Such data appear to be

A

.

very valuable in the region of near separation in unsteady flow.

NS

In this report the important aspects of the last year's studies
will be briefly outlined. The results of the last few years will be

placed in a more general context. This discussion will lead to a

F AR

discussion of some important unanswered questions and their importance.

Technical Summary

The important technical points to be discussed are as follows:*
The nature of the various correlation terms in unsteady flow.
Experimental demonstrations of the two dimensionality of the flow
field.

Experimental delineation of acoustic effects from unsteady velocity

offcctq.

4., Characteristics of unsteady separated flow in this experiment.

*The geometry and the detailed nature of the experimental conditions
and data acquisition system are described in detail in References 2
and 3.
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§§ 5. Comments on the tralling edge flow.
£ 6. On the proposed method of measuring shear.
;Ej ) Results of a study of the turbulent unsteady near wake completed in the
R -
SO fall of 1982 are given in the attached copy of AIAA paper 83-0127.
0 On_the nature of the several correlation terms
‘% Recall that our signals for, say, the tangential component of
-4'_3
AN velocity are defined to contain three parts (Refs. 4, 5, 6): a time
_Ié: mean part, a periodic but not necessarily sinusoidal part, and the part
3¢
t}j left over. Thus if u(x,t) is our measured signal, then the time mean is
=
<7 defined A |
% ' - 1 T
}3 u(x,) = lim — f u(x,t)dt
t-. T+m 2T =T
2
N Purther wve can take an ensemble or phase lock average
Y
g)
&) N"‘
N Q(x,t)> =+ P u (x,t +n3Lsyg)
b n=0 w
_¢4
35 vhere 0 < 6 < 2v/w , but is constant for each average. Note then
axl
¢§
f“ <ua({x,t)> = u(x) + u(x,t)
‘\"
:;% This equation is, in fact, the definition of the periodic part of
..' * ~
" the signal, u. The remaining term is, by definition
2 u'(x,t) =u =-<w =u=-u- u
5%
=y
e
A Note u' has two properties, by definition
Qo
P
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1 T
A) lim — f u'(x,t)dt = 0

Tom 2T T
N=-1 2

B) Y uwix,t+n=L+9)=0
n=0 w

That is to say u’ has zero time mean and has zero ensemble average.

We are assuming that u' corresponds to the usual turbulent velocity
component that one measures in steady flow. In turbulent boundary
layer theory the term <uv> is of great importance since it leads to the
"Reynolds Stress"™ terms. Based upon the decomposition above we find

- - ~ ~ o - o, ~ o, - o,
<uv> = uv + uv + uv + uv +<uv > + <uv > + <uv >

~ . o

+ <uv > + <u v >

The time average of this term gives

1 T -’ 1 T -~ ~— ~—
lim — f (uv)dt = uv + 1lim — j (uv + uv + uv)dt
Pom 2T -T Tow 2T -T

T ~ . - ~,
+11ml- f {uv +uv+uv)dt
T+ 2T -T

But by definition u and v have zero mean, 8o

~ . -~

-an ~ - o,
(uv) = uv + uv +u v +uv +uv

The term ;; is non-zero because it may contain a rectification
effect. Further this sort of term will appear in the left hand side of

the momentum equation for each periodic velocity term (i.e. ;aﬁ/ay,

[y \c.\-‘ Sy u'\ __1.‘, ‘\ '..Q‘ W
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etc.). The terms u'v' is the classic Reynolds stress term. The

last twvo terms would seem to have a smali value (random rectifications).
The real issue is whether or not u' as a function of time is of finite
or zero measure. In the latter case u'v is identically zero. 1In the

former it should be small. According to our data terms like u'v and
Uv' are less than 104 of U or less than 1% of u'v’.
Similarly we may take an ensemble average, subtract out the mean

and end up with

N - ~ - ~ o ~ . -~
uv = uv + uv + uv + uv _+ u v + u

- -
v
- ~ - ~ P

= uv +uv +uv + u v

The appearance of the non-zero term 57;' is a curiosity. The basic
premise is that the periodic part of each term in u and v had been
removed by the previous manipulation. Figure 1 shows typical values of
57;1 across the wake 1ay.r7. It is definitely not zero. It was
suggested by Lorber3 that a simple geometric argqument accounts for

this term. To follow this argument keep in mind that u is really a
tunctiqn of x and y as well as time. In the unsteady boundary layer we
expect each of the several thicknesses characterizing the boundary layer
to vary over a cycle. It is well known that the turbulent intensity is
a function of the distance from the wall. Hence the probe sees a
variation in scale position (i.e., y/5 with y fixed). So since the u'
and v' correspond to different heights in the boundary layer over a
cycle, so 67;' is non-zero. Thus, there is an unsteady contribution to

the Reynolds stress, at a fixed y that varies over the cycle. This
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model will be discussed further below.

Experimental Demonstrations of Two-Dimensionality

The two-dimensional characteristics of the flow pattern were
measured in two wvays. First, pressure taps were mounted in the lateral
positions +£12.5% and +25% of chord from the mid span location at 6
chordwise locations betwegn x/c=0.025 and 0.988. Figures 2A, B, and C
show the comparison of this data for attached flow. The data show the
flow is locally two-dimensional. Figures 3A-C show the same kind of
data vhen a laminar separation bubble is present near the leading edge.
This separation point location can be predicted by Stratford's
criteria when based upon mean flow properties to within about 20% (or

about 1/2% of the chordwise position). The reattachment zone is

predicted by Owen and Klanfer's criterial® equally well. Figures 4A-C

show results for massive separation of an artificially tripped boundary
layer, while Figure 4D shows the mean pressure distribution with natural
transition. Lack of two-dimensionality in the leading edge bubble
separation has been observed by Winkleman at the U. of Marylandll,
More important, our data shows the separation zone for the case of
artificial transition is more three-dimensional than either the
laminar bubble or the massive separated region.

The other procedure to test the two-dimensionality is
through wvake measurements. Typical data is shown in Figqures 5 and 6.
The conclusion is that locally, the flow is two-dimensional for at least
the distance of + one quarter span on either side of the airfoil

centerline. The two regions selected, the location of the separation

e A A e e
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'*g bubble and the near wake, are regions where one would expect the

departure from two-dimensional flow to be the largest. Hence we are

By

:;é confident our conclusion that the flow is essentially two-dimensional is
:; . valid.

% Characteristics of Unsteady Separated Flow

a§ In this discussion we will deal with bulk characteristics associated
'J; with separated flow. This restriction is primarily due to problems

D4 associated with measuring the details associated with unsteady éeparated
A

Ei flow. (It 13111k01y that a conputér contolled laser anemometer could track
;%SE the separation point; while there is no substantiation of this conjecture
~ on separated flow, such measurements have been made in the wake of a

AN

gié propeller.) Thus separation is located more or less by examination of the
‘[? mean and fluctuating pressure distribution. Hence the final separation
s, point location is known no more accurately than the distance between

ég pressure taps. Figure 7 shows the variation of E% vs x/c as a function

of reduced frequency, k, in the fully attached case8. Note the high

P

~a' %> g - DY . A, e I C e L. . -
o N o .

‘k: .vnlno of the peak suction pressure coefficient (-6.2), and the tendency of
5‘1 the mean pressure coefficient difference to approach zero at the trailing
o
i€c edge. PFigure 8 shows the change in aean difference when separation is

oy present on the upper surface®. In this case, the mean lower surface

¢S pressure coefficient is as it was before, except near the leading edge, but
;_; the mean upper surface pressure coefficient is radically transformed.
f~$ Figures 9 and 10 summarize the current data on attached flow, separated
z: flow and the boundary regions dividing the two8. The transition strip is
N
t:; #120 grit 0.125" wide at the leading edge. In these figures “dynamic

-
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separation” implies the flow varies between attached and separated in an

q; intermittent way as shown in Figure 11 (which is also taken from Ref. 8).
i The attached interval varies from 2-30 ellipse revolutions, as is also true
b in the separated state.

~ The data allows comparison of separated and attached flow for the

same a, k and Reynolds number. Figure 12 shows the first harmonic of

Cp as a function of x)c and Figure 13 shows the phase lag under the

) ‘ same conditions. The non-attached unsteady flow seems to be convected

’: over the front 40% of the chord, and acts as if it were attached over

the last 60%. This supposition is based upon a comparison of E; and

,is its phase in attached flow. At the present time it is not clear what is
;ES being convected at approximately 0.55 U,, in the separated flow

5 regime. However the data (Fig. 14) suggests that whatever it is, it is
i\ roughly the same whether the boundary layer has natural or artificial
",

"é transition. Figure 15 shows the variation of convected velocity with

) : "k". This variation is consistent with that reported by Carta et

;; al.12, e note too that when Ap is added to AP, the angle of attack

:3 at stall is increased by the unsteady process, as reported by McCrosky
ot a1.13,

ii We note the oscillating variation of term E; on the upper surface
;E; over the front half of the airfoil acts as a convected process, not an
o

acoustic process, because a change in speed of about 50% does not change

*
v
.
»

the behaviour (Fig. 16).

.
* e
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An examination of two summary plots (Figs. 17A, B) for a range of

’

o
— “k's", at a=15 degrees and for natural transition shows the amplitude
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L
and phase of the fundamental of the unsteady pressure coefficient (cp)

varies from the leading edge to the trailing edge as follows:

k #humps #valleys phase speed comments
0.5 1 b slow downstream, sign rises slowly, sharp

change - at .8. Last drop off at TE
value of the slope is

slightly negative

(-008)

1.0 2 2 .14 over last 70% more or less like
of chord .~0 over k=.5 for front 1/2
lst 30% chord, oscillation

amplitude grows
toward TE

2.0 3 2 0 over 1at 20% more or less const
«27 over last 80% ampl, rising slope

toward TE

3.9 3 2(3) .45 over 1lst 50% decreasing ampl.
~ zero after towards TE flat

’ at TE

6.4 4 4 .55 over 1lst 40% decreasing ampl.
~ zero or slightly toward TE, rising
negative last 60% characteristic at

TE, flat at midchord

Three features stand out on this chart. The number of cycles.
increase with "k*, The character of the distribution changes
drastically with "k". For these conditions, at low "k" the amplitude
increases with "k", strongly so, over the last 20% of the airfoil.
There is little going on over the front of the airfoil. At higher "k"
the oscillation is maximum near the leading edge and decreases as one

soves aft towards the trailing edge. Purther the convection

T '{{q‘_:f.;l.:'-'_:(‘:.";.:%.‘\.'...:. e e \:.\. ‘_.'__:’- T
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characteristic is the strongest where the fundamental amplitude of the

unsteady pressure is the largest. In the case of artificial transition,.

the implication is a change-over from trailing edge separation at low
*k" to a leading edge separation at higher "k". This dependence at high
k" is extraordinary because at high “"k" the mean plus unsteady pressure
gradient effects are largest at the trailing edge. Note the unsteady
flow field seems to be superimposed on the relatively constant pressure
mean flow field on the upper surface.

Clearly this flowfield is not understood.

Comments on Trailing Edge Conditions

»> - - ce @ & a2 & w" - -
A Ry B K ARy

The data from References 1 and 2 show the pressure difference
between the upper and lower surface seems to approach zero as the -
trailing edge is approached. At low values of k tihe variation of Ap is
approximately as the square root of distance from the trailing edge. As
k increases the variation is more nearly linear. Examination of Figures
7 and 8 indicates the pressure differenc; is finite and varies smoothly
as the trailing edge is approached, whether the flow is separated or

not. This implies the extended Kutta conditionl4

l(uz_uz) --d—r
u L dt

may well be applicable here. (Note here u, is the tangential
velocity, just outside the boundary layer at the upper separation
point, while u;is the tangential velocity just outside the boundary

layer at the separation point on the lower surface. The latter point
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is noainally at the trailing edge.) For rough purposes one could argue

- ~ -~ ~2 ~2
uua =uu u =1

C =C +2—+t__uu, &
P P ot u?
[} [-J

Thus the pressure difference has a part proportional to the mean, one to
the fundamental frequency and as indicated by the third term, a term
proportional to the second harmonic, as shown in Figure 18, for the
upper gurface pressures. However the fact that the second harmonic
appears only near the trailing edge reduces the validity of this
argument.

On the Effect of Acoustic Excitation

The effect of the noise generated from the rotating ellipse was
investigated. This was accomplished by first measuring the sound
pressure level at 7 locations near the airfoil. This pressure was then
reproduced using a speaker. The airfoil/speaker configuration is shown
in Figure 19. Many difficulties were encountered in accurately
reproducing the acoustic wave characteristics, particularly at low k.
Therefore only reduced frequencies of k=2,0 and 6.4 were reproduced.
For these two cases the sound pressure level could not be duplicated
over the entire airfoil at the same time because the amplitude decay of
the pure sound wave excitation with distance was different than the
combination of effects due to the rotating ellipse. Therefore three
separate sound pressures were used, one corresponding to that at the

leading edge, one to that at the trailing edge, and one that is

somevhere in between. (This adds a large degree of uncertainty to the

E I B I O
. .
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o validity of the results.) The surface pressure distribution and
¢;é boundary layer profiles were measured and then compared to those for
N
R the airfoil/ellipse combination.

£
s‘: The conclusion was reached that at low values of "k" (2 or less)
Hed the acoustic part of the response is some 30 decibels below the measured
A
5y
:“2 pressure with wind on. At k of 6.4 the acoustic pressure level

&
¥

g
ey recorded on' the airfoil is 5-6 db less than the wind-on measurement.
Q? Hence the threshold for effects of compressibility on the flow must lie
]

-.‘:4.
.}3 in the neighborhood of these higher values of k. For the most part the
P\

- acoustic excitation had a negligible effect on the measured boundary
oY layer characteristics.

ji On_the Measurement of Shear

Ty
N The detailed measurement of the velocity profile shows that (in
Ej inner coordinates) there is a region where

4

)

\

s

~ + yu

‘4’4 — y - _T

u v
) T

554 In this region then one can measure u near the wall and find, if v and
N

N .y are known
::-'-J' uz = Lu - l Uzc

- T 2 ef

u:\J Y

~

"l
—— For our boundary layers if we can measure u at y corresponds to y* = 6
;t? or less we can deduce Cg¢. Such probes are under construction and will
o
e

;jj be calibrated in known flows. |
L
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Oon the Relation of These Results to Other Results

Cextain of these results discussed above indicate for example that
the unsteady Reynolds stress term (u'v') seems to be present in all the
data4,18 in the literature, whether the data was obtained in a channel
with forced excitation, or on an airfoil which is the configuration of
our experiment. Lorber's geometric argument3 seems to apply to both
channel flow and our external flow. If variables such as <u> and <u'v'>
depend only on distance and some thickness §(t), such that

<u(y,t)> = <uly/s(t))>

<u'v'(y,t)> = <u'v'(y/5(t))> , then
time and space derivatives are related by

<u> - acu> zﬁ
at Yy § dt

and

acu'v'!> _ a<u'v'!> _y 4§
at y § dt
If the mean and first harmonic are considered, so that
<u> (y,t) = uly) + (ylexp(i(ut-¢y(y))), and
<u'v'> (y,t) =u'vi(y) + @' v'(y)exp(i(ut=gyiyr(y))), time

differentiation and division produce the relation

a<u'v'’!>
u'v’ Y -
- 3 <a> exp(i(ou (y) = ¢ i (V)
y

Pinally, for small unsteady amplitudes and for profiles similar at each

time, -

-

'\ 3
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.<u> must be in phase if 3u'V'/3y has the same sign as 3u/3y and
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3 ulv!> = O oioT 3 ~9 =
— <u'v'> = = qu'y and 2 <uw> =2~ 7 , and therefore
3y 3y y Ay

au'v!
L - 3y

u F1
y

This relation predicts the amplitude of <u'v'> based upon i, u and

u'v', Also, since the left hand side is positive and real, <u'v'> and

1809 out of phase if the signs are reversed. Figure 20 shows a
comparison of computations from this model and data from our experiment.
References 3 and 16 provide further details and c;mparisons with other
data, both for phase and amplitude.

A second issue here is the relation of the "Kutta Condition" in
steady and unsteady flow. There are two characteristics of the airfoil
associated with the Kutta condition. The first is the statement that
the pressure jump is non-infinite at the trailing edge. The data which
has been developed in this program shows

(1) for all attached flows Ap+0 at the trailing edge;

(2) for all separated flow Ap is not infinite at the trailing edge.
This aspect of the "Kutta Condition" is absolutely satisfied. in every
case. The second consequence of the "Kutta Condition" is to fix the ii

value of the circulations about the airfoil. These calculations for

lamina suggest a value for the circulation is
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*-": This value increases linearly with the thickness ratio for an
b airfoll with a cusped trailing edge, and decreases with included
'i: trailing edge angle, and decreasing Reynolds number. For an 0012

é; airfoil the net result is that

EX

C. = (0.9)C
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4 vhere C_ is the zero thickness lamina value (27a)

f: IDEAL
O
o, Pigure 21 shows the value of the mean Cp, at a=10° for two
b {-

% Reynolds numbers as a function of k. Two clear conclusions are reached.
g2 First C; mean increases with Reynolds number, and second Cj
- increases with reduced frequency. Figure 22 shows the unsteady
.o

j increment is of the order of 0.15. This represents a substantial

\
'fﬁ improvement in effectiveness of developing 1ift on heavily loaded

{ airfoils in unsteady flow. The improvement in the ability of an airfoil
.

s: to generate 1ift in unsteady flow is in substantial agreement with ghe
:} data in Ref. 13, This improvement comes about in spite of the great
5 difference in the source of the unsteady flow.

“~

Sj These sorts of results for the lift coefficient were not

~
2y unexpected. However the data on the unsteady pressure coefficient in
- Figs. 12-17 have yet to be explained. The variation of p with x/C
}% shown there is unexpected and unexplained. (These matters are under
i
s ltudy’s.) This confusing situation is further complicated by
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data (Figs. 11, 23) which demonstrates intermittent separation in
unsteady flow.

To further compound the complexity of the situation, Figure 24
shows a rough plot of our boundary layer data on a Clauser [A/s - 6(G)]
pPlane., The steady state ."-elf-similar" profiles are shown as flat
plate, Clauser #1 and Clauser #2. The unsteady data at small ¢ is well
avay from this linei(although the steady data are not too far from it)
lying at a value of "G" that is too high. Thgt is, the unsteady losses
exceed those expected in steady flow. As k increases, the relative size
of the unsteady losses decrease. At higher g, the unsteady losses seem
to be too small compared to the "self-similar” thickness. The
implications here seem simple. As tﬁe Stokes layer becomes thinner with
respect to the boundary layer thickness (i.e., as k increases) more and
more of the boundary layer acts approximately as a quasi-steady layer.
The lnallo; unsteady amplitudes seen at higher frequencies may also be a
factor. The consequences of this are treated in Ref. 16,

Closing Remarks

At the present time, many of the characteristics of the unsteady
flow field as measured in this program are unexplained. These vary from
the frequency doubling at the trailing edge for low frequency separated
flows to the appearance of a transition from a downstream convected
process to a standing wave as one proceeds downstream following a
leading edge separation. Understanding of some of these details may or

may not be improved by measurement of shear at the wall under these

unsteady flow conditions. In other words the primary qﬁestion is which
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of these characteristics are a result of this particular test
configuration and which are characteristic of general unsteady flows.

At the present time the results suggest that the determination of the

Pt alalsln a2’

characteristics of the separation point may be a clarifying result.

Because of the detailed balance at the separation point, it is suggested

that non~-obtrusive instrumentation may be the only way one can obtain

)A‘I.

unbiased data under these circumstances.

Status of Research

We have met the following program goals during the iast grant year.
h (1) The unsteady boundary layer computer program is operational using

an algebraic turbulence model. Work is continuing on a version using a

o o’ o8
P,

three transport equation turbulence model.

(2) We have demonstrated the two-dimensional charaéter of the flow and
find it satisfactory, except possibly near the leading edge laminar
separation bubble or at the separation point if transition is forced.
(3) The bshavior of the unsteady turbulent near wake has been studied
for a wide range of flow conditions, revealing many interesting

features.

| P I rror A,

(4) In this experiment at low reduced frequencies the unsteady flow is

primarily an upwash effect, and the flow behavior is like that

HALLLY

predicted by unsteady potential flow of an incompressible fluid. At

higher reduced frequencies the pressure on acoustic wave may account
{ : for up to 10% of the excitation. The boundary layer characteristics
seem to be unaffected by the acoustic excitation.

3 (5) More of the test matrix in a, k and Ry has been filled in for
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> :
o 1
o turbulent boundary layer profiles, including measurements of <u>, <v>, i
AN <u'u’'>, <v'v'> and <u'v'>. 1
o ‘
0 (6) The unsteady separated flow zone has been mapped out. Although the

) surface pressure distribution has revealed many interesting

o characteristics, the details are not yet completed. (For example, we

have yet to measure the motion of the unsteady separation point.)
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